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Chapter 11

PRIVACY PROTECTION IN COLLABORATIVE
FILTERING BY ENCRYPTED COMPUTATION

Wim F.J. Verhaegh, Aukje E.M. van Duijnhoven, Pim Tuyls, and Jan Korst

Abstract We present a method to protect users’ privacy in collaborative filtering by per-
forming the computations on encrypted data. We focus on the commonly-used
memory-based approach, and show that the two main steps in collaborative fil-
tering, being the determination of similarities and the prediction of ratings, can
be performed on encrypted profiles. We discuss both user-based and item-based
collaborative filtering, and for a number of variants of the similarity measures
and prediction formulas described in literature, we show how they can be com-
puted using encrypted data only. Although we consider collaborative filtering in
this chapter, the techniques of comparing profiles using encrypted data only is
useful in a much wider range of applications.

Keywords Collaborative filtering, privacy, encryption.

11.1 Introduction
One of the key characteristics of ambient intelligence [Aarts & Marzano,

2003] is personalization, which ensures tailored applications and services to
users. In order to realize personalization, electronic systems need user pro-
files, indicating the specific characteristics and preferences of users. If such
personalization is realized by a stand-alone device, there is no issue, but if the
personalization is offered by a service on the internet, the privacy of users may
be at stake. Although most internet services, such as Amazon, have a privacy
statement on their web site, users may be reluctant to give their personal data
away, for several reasons. First, they may not trust every server. Secondly, they
may trust the server, but do not want to run the risk that it gets hacked. Thirdly,
the server may be reliable, but if it goes bankrupt, the user profiles represent
valuable information that may be sold to third parties. Of course the privacy
concern depends on the kind of data, e.g. preferences for books may be less
sensitive information than users’ medical records.
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In order to protect the users’ privacy, we investigate the possibilities that
encryption techniques offer. The idea is that a user only releases personal
information in an encrypted form, and that all the computations necessary for
the personalization are done on the encrypted data. In the end, the user will
receive an encrypted personalization result, which he can decrypt and use.

In this chapter we show how the above can be realized for recommendation
services based on collaborative filtering [Herlocker et al., 1999; Shardanand &
Maes, 1995], as a first personalization application that we select. Collabora-
tive filtering is a well-known technique to recommend e.g. new music or books
to users, and helps users in coping with the overload of content that is avail-
able through the internet. Based on a user’s likes and dislikes for previously
encountered content, it estimates to what extent he would like other content
that is available. To this end, collaborative filtering uses the preferences of a
community of users.

We can distinguish two global types of collaborative filtering approaches:
memory-based [Herlocker et al., 1999] and model-based [Canny, 2002].
Memory-based collaborative filtering is the most commonly used approach.
In this approach, which is a lazy learning approach in machine learning terms,
the preferences (in the form of ratings for content) of a community of users
are collected at a web server. Then, a similarity measure is computed between
each pair of users based on the content they jointly rated. Next, recommenda-
tions for a particular user can be made by considering users that are similar to
him, and checking for content that they liked but that has not yet been rated by
the user or that is not yet in the user’s collection.

Model-based approaches pursue a more active learning strategy. First, the
collected preference data is processed to build a model of the users’ profile
space. For instance, Canny [2002] describes a factor-analysis approach, which
first distills a basis of user preference profiles and expresses the individual
users’ profiles in terms of this basis. Next, this model is used to make predic-
tions.

As mentioned, we want to develop a system that prevents any information
about a user’s preferences to become known to others. This not only means that
we want to keep the user’s ratings for items secret, but even the information of
what items he has rated. Furthermore, we do not even want to reveal this kind
of information anonymously, as we do not want to run the risk that the identity
of the user is traced back somehow, after which his data is in the clear. Finally,
as similarities between users also give information about a user’s preferences,
we also want to keep this data secret.

In addition to the above requirements from a user’s perspective, we add the
requirement that the server should maintain some control over the service, i.e.,
it should not be possible for a user to trivially retrieve valuable gathered data
to set up a recommendation service too.

Wim F.J. Verhaegh et al.



www.manaraa.com

171

Whereas Canny [2002] focuses on model-based collaborative filtering, we
discuss in this chapter how the more commonly used memory-based collabo-
rative filtering technique can be performed on encrypted data. This holds for
all variants of similarity measures and prediction formulas that we describe.

The remainder of this chapter is organized as follows. First, in Section 11.2
we discuss the procedures and formulas behind memory-based collaborative
filtering, where we distinguish user-based and item-based approaches. Next,
in Section 11.3 we briefly describe the proposed encryption system and its
beneficial properties. Then, we discuss how the above requirements can be
met, by describing how to perform the collaborative-filtering computations on
encrypted data for the user-based and item-based approaches in Sections 11.4
and 11.5, respectively.

Although we focus in this chapter on encryption of preference information
in collaborative filtering, the techniques we present are applicable in a much
broader context, as many more ambient intelligence applications will use some
form of matching profiles. Also these applications may be much better ac-
cepted by users if private information can be protected. We will however not
elaborate on this.

11.2 Memory-based collaborative filtering
Most memory-based collaborative filtering approaches work by first de-

termining similarities between users, by comparing their jointly rated items.
Next, these similarities are used to predict the rating of a user for a particular
item, by interpolating between the ratings of the other users for this item. Typ-
ically, all computations are performed by the server, upon a user request for a
recommendation.

Next to the above approach, which is called a user-based approach, one can
also follow an item-based approach. Then, first similarities are determined
between items, by comparing the ratings they have gotten from the various
users, and next the rating of a user for an item is predicted by interpolating
between the ratings that this user has given for the other items.

Before discussing the formulas underlying both approaches, we first intro-
duce some notation. We assume a set U of users and a set I of items. Whether
a user u ∈ U has rated item i ∈ I is indicated by a boolean variable bui which
equals one if the user has done so and zero otherwise. In the former case, also
a rating rui is given, e.g. on a scale from 1 to 5. The set of users that have rated
an item i is denoted by Ui, and the set of items that have been rated by a user u
is denoted by Iu.

Privacy Protection in Collaborative Filtering by Encrypted Computation
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11.2.1 The user-based approach
User-based algorithms are probably the oldest and most widely used collab-

are two main steps: determining similarities and calculating predictions. For
both we discuss commonly used formulas, of which we show later that they all
can be computed on encrypted data.

Similarity measures. Quite a number of similarity measures have been
presented in the literature before. We distinguish three kinds: correlation mea-
sures, distance measures, and counting measures.

Correlation measures. A common similarity measure used in literature is the
so-called Pearson correlation coefficient (see e.g. [Sarwar et al., 2000]), given
by1

s(u,v) =
∑i∈Iu∩Iv(rui − ru)(rvi − rv)√

∑i∈Iu∩Iv(rui − ru)2 ∑i∈Iu∩Iv(rvi − rv)2
, (11.1)

where ru denotes the average rating of user u for the items he has rated. The
numerator in this equation gets a positive contribution for each item that is ei-
ther rated above average by both users u and v, or rated below average by both.
If one user has rated an item above average and the other user below average,
we get a negative contribution. The denominator in the equation normalizes
the similarity, to fall in the interval [−1,1], where a value 1 indicates complete
correspondence and −1 indicates completely opposite tastes.

Related similarity measures are obtained by replacing ru in (11.1) by the
middle rating (e.g. 3 if using a scale from 1 to 5) or by zero. In the latter
case, the measure is called vector similarity or cosine, and if all ratings are
non-negative, the resulting similarity value will then lie between 0 and 1.

Distance measures. Another type of measures is given by distances between
two users’ ratings, such as the mean-square difference [Shardanand & Maes,
1995] given by

∑i∈Iu∩Iv(rui − rvi)2

|Iu ∩ Iv| , (11.2)

or the normalized Manhattan distance [Aggarwal et al., 1999] given by

∑i∈Iu∩Iv |rui − rvi|
|Iu ∩ Iv| . (11.3)

1Note that if Iu ∩ Iv = Ø, then the similarity s(u,v) is undefined, and it should be discarded in the prediction
formulas (11.9)–(11.11).
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Such a distance is zero if the users rated their overlapping items identically, and
larger otherwise. A simple transformation converts a distance into a measure
that is high if users’ ratings are similar and low otherwise.

Counting measures. Counting measures are based on counting the number of
items that two users rated (nearly) identically. A simple counting measure is
the majority voting measure [Nakamura & Abe, 1998] of the form

s(u,v) = (2− γ)cuvγ duv , (11.4)

where γ is chosen between 0 and 1, cuv = |{i ∈ Iu ∩ Iv | rui ≈ rvi}| gives the
number of items rated ‘the same’ by u and v, and duv = |Iu ∩ Iv| − cuv gives
the number of items rated ‘differently’. The relation ≈ may here be defined as
exact equality, but also nearly-matching ratings may be considered sufficiently
equal.

Another counting measure is given by the weighted kappa statistic [Cohen,
1968], which is defined as the ratio between the observed agreement between
two users and the maximum possible agreement, where both are corrected for
agreement by chance. More formally, the measure is given by

s(u,v) =
ouv − euv

1− euv
. (11.5)

Here, ouv is the observed fraction of agreement, given by

ouv =
∑i∈Iu∩Iv w(rui,rvi)

|Iu ∩ Iv| , (11.6)

where weights w(x,y), with 0 ≤ w(x,y) = w(y,x) ≤ 1 and w(x,x) = 1, indicate
the degree of correspondence between ratings x and y. The offset euv is the
expected fraction of agreement, and is given by

euv = ∑
x∈X

∑
y∈X

pu(x)pv(y)w(x,y), (11.7)

where X is the set of possible ratings, and pu(x) is the fraction of items that u
has given a rating x, i.e.,

pu(x) =
|{i ∈ Iu | rui = x}|

|Iu| . (11.8)

Prediction formulas. The second step in collaborative filtering is to use the
similarities to compute a prediction for a certain user-item pair. Also for this
step several variants exist. For all formulas, we assume that there are users that
have rated the given item; otherwise no prediction can be made.
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Weighted sums. The first prediction formula, as used by Herlocker et al.
[1999], is given by

r̂ui = ru +
∑v∈Ui s(u,v)(rvi − rv)

∑v∈Ui |s(u,v)| . (11.9)

So, the prediction is the average rating of user u plus a weighted sum of devi-
ations from the averages. In this sum, all users are considered that have rated
item i. Alternatively, one may restrict them to users that also have a sufficiently
high similarity to user u, i.e., we sum over all users in Ui(t) = {v∈Ui | s(u,v)≥
t} for some threshold t.

An alternative, somewhat simpler prediction formula is given by

r̂ui =
∑v∈Ui s(u,v)rvi

∑v∈Ui |s(u,v)| . (11.10)

Note that if all ratings are positive, then this formula only makes sense if all
similarity values are non-negative, which may be realized by choosing a non-
negative threshold.

Maximum total similarity. A second type of prediction formula is given by
choosing the rating that maximizes a kind of total similarity, as is done in the
majority voting approach, given by

r̂ui = arg maxx∈X ∑
v∈Ux

i

s(u,v), (11.11)

where Ux
i = {v ∈Ui | rvi ≈ x} is the set of users that gave item i a rating similar

to value x. Again, the relation ≈ may be defined as exact equality, but also
nearly-matching ratings may be allowed. Also in this formula one may use
Ui(t) instead of Ui to restrict oneself to sufficiently similar users.

Time complexity. The time complexity of user-based collaborative filtering
is as follows.

For the first step, there are O (|U |2) pairs of users between which a sim-
ilarity has to be computed. Similarity measures (11.1)–(11.4) require sums
of O (|I|) items, hence giving a total time complexity of O (|U |2|I|) to deter-
mine all similarities. The computation of the weighted kappa statistic (11.5)
requires per pair of users O (|I|) steps to compute (11.6) and O (|X |2) steps
to compute (11.7), where for the latter one needs to compute (11.8) in O (|I|)
steps once per user and per value in X . So, this gives a total time complexity
of O (|U |2|I|+ |U |2|X |2 + |U ||I||X |) for the kappa statistic. As |X | is typically
bounded by a small constant, say between 5 and 10, this reduces to the same
time complexity O (|U |2|I|) as for the other measures.
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If for all users all items with a missing rating are to be given a prediction,
then this requires O(|U ||I|) predictions to be computed. Prediction formulas
(11.9) and (11.10) can be computed in O(|U |) steps, where (11.9) requires
O(|I|) steps once per user u to compute his average ratings ru. So, this gives a
total complexity of O(|U |2|I|) to compute all predictions. Prediction formula
(11.11) however requires O(|U ||X |) steps per prediction, thereby giving a to-
tal complexity of O(|U |2|I||X |) to compute all predictions. Again, if |X | is
bounded by a constant, this time complexity reduces to O(|U |2|I|).

11.2.2 The item-based approach
As mentioned, item-based algorithms [Karypis, 2001; Sarwar et al., 2001]

first compute similarities between items, e.g. by using a similarity measure

s(i, j) =
∑u∈Ui∩Uj(rui − ru)(ru j − ru)√

∑u∈Ui∩Uj(rui − ru)2 ∑u∈Ui∩Uj(ru j − rv)2
. (11.12)

Note that the exchange of users and items as compared to (11.1) is not com-
plete, as still the average rating ru is subtracted from the ratings. The reason
to do so is that this subtraction compensates for the fact that some users give
higher ratings than others, and there is no need for such a correction for items.

The standard item-based prediction formula to be used for the second step
is given by

r̂ui = ri +
∑ j∈Iu s(i, j)(ru j − r j)

∑ j∈Iu |s(i, j)| . (11.13)

The other similarity measures and prediction formulas we presented for the
user-based approach can in principle also be turned into item-based variants,
but we will not show them here.

Also in the time complexity for item-based collaborative filtering the roles
of users and items interchange as compared to the user-based approach, as
expected. For the first step, O(|I|2) similarity measures (11.12) have to be
computed, each of which takes O(|U |) steps. The prediction formula (11.13)
requires O(|I|) steps for each user and each item, where the average rating ri
takes O(|U |) steps once per item i. As a result, the total time complexity is
given by O(|U ||I|2).

If the number |U | of users is much larger than the number |I| of items, the
time complexity of the item-based approach is favorable over that of user-based
collaborative filtering. Another advantage in this case is that the similarities are
generally based on more elements, which gives more reliable measures. A fur-
ther advantage of item-based collaborative filtering, as argued by Sarwar et al.
[2001], is that correlations between items may be more stable than correlations
between users, but we will not elaborate on this.

Privacy Protection in Collaborative Filtering by Encrypted Computation
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11.3 Encryption
In the next section we show how the presented formulas for collaborative

filtering can be computed on encrypted ratings. Before doing so, we present
the encryption system we use, and the specific properties it possesses that allow
for the computation on encrypted data.

11.3.1 A public-key cryptosystem
The cryptosystem we use is the public-key cryptosystem presented by Pail-

lier [1999]. We will not describe it in full detail, for which we refer to the
chapter, but we briefly describe how data is encrypted.

First, encryption keys are generated. To this end, two large primes p and
q are chosen randomly, and we compute n = pq and λ = lcm(p− 1, q− 1).
Furthermore, a generator g is computed from p and q (for details, see [Paillier,
1999]). Now, the pair (n,g) forms the public key of the cryptosystem, which is
sent to everyone, and λ forms the private key, to be used for decryption, which
is kept secret.

Next, a sender who wants to send a message m ∈ Zn = {0,1, . . . ,n−1} to a
receiver with public key (n,g) computes a ciphertext ε(m) by

ε(m) = gmrn mod n2, (11.14)

where r is a number randomly drawn from Z
∗
n = {x∈Z | 0 < x < n∧gcd(x,n) =

1}. This r prevents decryption by simply encrypting all possible values of m
(in case it can only assume a few values) and comparing the end result. The
Paillier system is hence called a randomized encryption system.

Decryption of a ciphertext c = ε(m) is done by computing

m =
L(cλ mod n2)
L(gλ mod n2)

mod n,

where L(x) = (x− 1)/n for any 0 < x < n2 with x ≡ 1 (mod n). During de-
cryption, the random number r cancels out.

Note that in the above cryptosystem the messages m are integers. Never-
theless, rational values are possible by multiplying them by a sufficiently large
number and rounding off [Fouque, Stern & Wackers, 2002]. For instance, if
we want to use messages with two decimals, we simply multiply them by 100
and round off. Usually, the range Zn is large enough to allow for this multipli-
cation.

Wim F.J. Verhaegh et al.
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11.3.2 Properties
The above presented encryption scheme has the following nice properties.

The first one is that

ε(m1)ε(m2) ≡ gm1rn
1gm2rn

2 ≡ g(m1+m2)(r1r2)n ≡ ε(m1 +m2) (mod n2),

which allows us to compute sums on encrypted data. Secondly,

ε(m1)m2 ≡ (gm1rn
1)

m2 ≡ gm1m2(rm2
1 )n ≡ ε(m1m2) (mod n2),

which allows us to compute products on encrypted data. An encryption scheme
with these two properties is called a homomorphic encryption scheme. The
Paillier system is one homomorphic encryption scheme, but more ones exist.

We can use the above properties to calculate sums of products, as required
for the similarty measures and predictions, using

∏
j

ε(a j)b j ≡ ∏
j

ε(a jb j) ≡ ε(∑
j

a jb j) (mod n2). (11.15)

So, using this, two users a and b can compute an inner product between a
vector of each of them in the following way. User a first encrypts his entries a j
and sends them to b. User b then computes (11.15), as given by the left-hand
term, and sends the result back to a. User a next decrypts the result to get the
desired inner product. Note that neither user a nor user b can observe the data
of the other user; the only thing user a gets to know is the inner product.

A final property we want to mention is that

ε(m1)ε(0) ≡ gm1rn
1g0rn

2 ≡ gm1(r1r2)n ≡ ε(m1) (mod n2).

This action, which is called (re)blinding, can be used also to avoid a trial-and-
error attack as discussed above, by means of the random number r2 ∈ Z

∗
n. We

will use this in Section 11.4.2.

11.3.3 A threshold version of the cryptosystem
The Paillier cryptosystem can also be implemented in a threshold version

[Fouque, Poupard & Stern, 2000], in which the decryption key is shared among
a number l of users, and a ciphertext can only be decrypted if more than a
threshold t of users cooperate. In this version, the generation of the keys is
somewhat more complicated, as well as the decryption mechanism. With-
out further going into details, for which we refer to Fouque, Poupard & Stern
[2000], we briefly discuss the decryption procedure in the threshold cryptosys-
tem. For this, first a subset of at least t +1 users is chosen that will be involved
in the decryption. Next, each of these users receives the ciphertext and com-
putes a decryption share, using his own share of the key. Finally, these decryp-
tion shares are combined to compute the original message. As long as at least
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t +1 users have combined their decryption share, the original message can be
reconstructed.

11.4 Encrypted user-based algorithm
Having all ingredients in place, we now explain how memory-based col-

laborative filtering can be performed on encrypted data, in order to compute a
prediction r̂ui for a certain user u and item i. Note that although the computa-
tions are done on encrypted data, the outcome is of course identical to that of
the original collaborative filtering algorithm.

We consider a setup as depicted in Figure 11.1, where user u communicates
with other users v through a server. Furthermore, each user has generated his
own key, and has published the public part of it. As we want to compute a
prediction for user u, the steps below will use the keys of u.

user
u

server users
v

Figure 11.1. The setup for the user-based algorithm.

11.4.1 Computing similarities on encrypted data
First we take the similarity computation step, for which we start with the

Pearson correlation given in (11.1). Although we already explained in Sec-
tion 11.3 how to compute an inner product on encrypted data, we have to re-
solve the problem that the iterator i in the sums in (11.1) only runs over Iu ∩ Iv,
and this intersection is not known to either user. Therefore, we first introduce

qui =
{

rui − ru if bui = 1, i.e., user u rated item i,
0 otherwise,

and rewrite (11.1) into

s(u,v) = ∑i∈I quiqvi√
∑i∈I q2

uibvi ∑i∈I q2
vibui

. (11.16)

The idea that we used is that any i �∈ Iu ∩ Iv does not contribute to any of the
three sums because at least one of the factors in the corresponding term will be
zero. Hence, we have rewritten the similarity into a form consisting of three
inner products, each between a vector of u and one of v.

The protocol now runs as follows. First, user u calculates encrypted en-
tries ε(qui), ε(q2

ui), and ε(bui) for all i ∈ I, using (11.14), and sends them
to the server. The server forwards these encrypted entries to each other

Wim F.J. Verhaegh et al.
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user v1, . . . ,vm. Next, each user v j, j = 1, . . . ,m, computes ε(∑i∈I quiqv ji),
ε(∑i∈I q2

uibv ji), and ε(∑i∈I q2
v jibui), using (11.15), and sends these three results

back to the server, which forwards them to user u. User u can decrypt the total
of 3m results and compute the similarities s(u,v j), for all j = 1, . . . ,m. Note
that user u now knows similarity values with the other m users, but he need not
know who each user j = 1, . . . ,m is. The server, on the other hand, knows who
each user j = 1, . . . ,m is, but it does not know the similarity values.

For the other similarity measures, we can also derive computation schemes
using encrypted data only. For the mean-square distance, we can rewrite (11.2)
into

∑i∈Iu∩Iv(r
2
ui −2ruirvi + r2

vi)
|Iu ∩ Iv| = ∑i∈I r2

uibvi +2∑i∈I rui(−rvi)+∑i∈I r2
vibui

∑i∈I buibvi
,

(11.17)
where we additionally define rui = 0 if bui = 0 in order to have well-defined
values. So, this distance measure can also be computed by means of four inner
products.

The computation of normalized Manhattan distances is somewhat more
complicated. Given the set X of possible ratings, we first define for each x ∈ X ,

bx
ui =

{
1 if bui = 1∧ rui = x,
0 otherwise,

and

ax
ui =

{ |rui − x| if bui = 1,
0 otherwise.

Now, (11.3) can be rewritten into

∑i∈I ∑x∈X bx
uia

x
vi

∑i∈I buibvi
= ∑x∈X ∑i∈I bx

uia
x
vi

∑i∈I buibvi
. (11.18)

So, the normalized Manhattan distance can be computed from |X | + 1
inner products. Furthermore, for the numerator a user v can compute
∏x∈X ε(∑i∈I bx

uia
x
vi) ≡ ε(∑x∈X ∑i∈I bx

uia
x
vi), and send this result, together with

the encrypted denominator, back to user u.
The majority-voting measure can also be computed in the above way, by

defining

ax
ui =

{
1 if bui = 1∧ rui ≈ x,
0 otherwise. (11.19)

Then, cuv used in (11.4) is given by

cuv = ∑
x∈X

∑
i∈I

bx
uia

x
vi, (11.20)
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which can again be computed in a way as described above. Furthermore,

duv = ∑
i∈I

buibvi − cuv.

Finally, we consider the weighted kappa measure (11.5). Again, ouv can be
computed by defining

ax
ui =

{
w(x,rui) if bui = 1,
0 otherwise,

and then calculating

ouv = ∑x∈X ∑i∈I bx
uia

x
vi

∑i∈I buibvi
. (11.21)

Furthermore, euv can be computed in an encrypted way if user u encrypts pu(x)
for all x ∈ X and sends them to each other user v, who can then compute

∏
x∈X

∏
y∈Y

ε(pu(x))pv(y)w(x,y) ≡ ε(euv), (11.22)

and send this back to u for decryption.

11.4.2 Computing predictions on encrypted data
For the second step of collaborative filtering, user u can calculate a predic-

tion for item i in the following way. First, we rewrite the quotient in (11.9)
into

∑v∈U s(u,v)qvi

∑v∈U |s(u,v)|bvi
. (11.23)

So, first user u encrypts s(u,v j) and |s(u,v j)| for each other user v j,
j = 1, . . . ,m, and sends them to the server. The server then forwards
each pair ε(s(u,v j)),ε(|s(u,v j)|) to the respective user v j, who computes
ε(s(u,v j))

qv j iε(0) ≡ ε(s(u,v j)qv ji) and ε(|s(u,v j)|)bv j iε(0) ≡ ε(|s(u,v j)|bv ji),
where he uses reblinding to prevent the server from getting knowledge from
the data going back and forth to user v j by trying a few possible values. Each
user v j next sends the results back to the server, which then computes

m

∏
j=1

ε(s(u,v j)qv ji) ≡ ε(
m

∑
j=1

s(u,v j)qv ji)

and
m

∏
j=1

ε(|s(u,v j)|bv ji) ≡ ε(
m

∑
j=1

|s(u,v j)|bv ji),

and sends these two results back to user u. User u can then decrypt these mes-
sages and use them to compute the prediction. The simple prediction formula
of (11.10) can be handled in a similar way.
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The maximum total similarity prediction as given by (11.11) can be handled
as follows. First, we rewrite

∑
v∈Ux

i

s(u,v) =
m

∑
j=1

s(u,v j)ax
v ji, (11.24)

where ax
v ji is as defined by (11.19). Next, user u encrypts s(u,v j) for each other

user v j, j = 1, . . . ,m, and sends them to the server. The server then forwards
each ε(s(u,v j)) to the respective user v j, who computes ε(s(u,v j))

ax
v j iε(0) ≡

ε(s(u,v j)ax
v ji), for each rating x ∈ X , using reblinding. Next, each user v j sends

these |X | results back to the server, which then computes
m

∏
j=1

ε(s(u,v j)ax
v ji) ≡ ε(

m

∑
j=1

s(u,v j)ax
v ji), (11.25)

for each x ∈ X , and sends the |X | results to user u. Finally, user u decrypts
these results and determines the rating x that has the highest result.

11.4.3 Time complexity revisited
The effect of encryption on the time complexity of computing the similari-

ties and predictions, is as follows.
The time complexity to compute (11.16) and (11.17) is determined by the

server, which has to forward for each user u, O(|I|) encrypted items to all
users v j. This can be done in a total of O(|U |2|I|) steps, which equals the
time complexity of the unencrypted case. For (11.18) and (11.20), O(|I||X |)
encrypted items have to be forwarded for each user u to all users v j, giving a
total of O(|U |2|I||X |) steps, which is a factor O(|X |) more than in the unen-
crypted case. Finally, for the weighted kappa statistic we first need O(|I||X |)
steps per pair u,v to compute ouv in (11.21), and secondly we need to compute
euv. The latter takes for each u, O(|U ||X |) steps for the server to forward the
encrypted items ε(pu(x)) to all other users v j, and O(|X |2) steps for all users
v j to compute (11.22). Note that the latter users can do so in parallel, and
hence the total time complexity of computing all kappa statistics is given by
O(|U |2|I||X |+ |U |2|X |+ |U ||X |2).

For the prediction formulas, encryption does not have an effect on the time
complexity. Formulas (11.23) and the encrypted version of (11.10) still require
O(|U |) steps per user u and item i for the work done by the user u himself and
the server, giving a total time complexity of O(|U |2|I|). The time complexity
to compute (11.24) in an encrypted way is determined by the server, which has
to calculate O(|X |) products (11.25) over O(|U |) entries for each user u and
item i, giving a total time complexity of O(|U |2|I||X |).

Although the time complexity is not much affected, we note that the run
time of course will increase, because of the more demanding computations on
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encrypted data. This overhead is determined by the length of the encryption
key.

11.5 Encrypted item-based algorithm
Also item-based collaborative filtering can be done on encrypted data, using

the threshold system of Section 11.3.3. The general working of the item-based
approach is slightly different than the user-based approach, as first the server
determines similarities between items, and next uses them to make predictions.

So, first the server considers each pair i, j ∈ I of items to determine their
similarity as given in (11.12). Again, we first have to resolve the problem that
the iterator, u in this case, does not run over the entire set U . To this end, we
rewrite (11.12) into

∑u∈U quiqu j√
∑u∈U q2

uibu j ∑u∈U q2
u jbui

.

So, we have to compute three sums, where each user u ∈ U can compute his
own contributions to them. Each of the three sums can be computed in the
following way. First, the users compute their contributions, encrypt them us-
ing the threshold encryption scheme, and send the encrypted contributions to
the server. The server multiplies all encrypted contributions, and gets in this
way an encrypted version of the respective sum. Next, the server sends this
encrypted sum back to the users, who each compute their decryption share of
it. These decryption shares are sent back to the server, and if the server has
received more shares than the threshold, it can decrypt the respective sum.

Next, we consider the prediction formula (11.13). For this, first the server
computes the average rating ri of each item i, which can be written as

ri = ∑u∈U rui

∑u∈U bui
,

where again we define rui = 0 if bui = 0. The two sums in this quotient can
again be computed by the server in the same way as described above.

Secondly, user u can compute a prediction for item i if we rewrite (11.13)
into

∑ j∈I bu j|s(i, j)|ri +∑ j∈I ru js(i, j)+∑ j∈I bu js(i, j)(−r j)
∑ j∈I bu j|s(i, j)| . (11.26)

Inspecting the four sums in this equation reveals that they are inner products
between vectors of u and of the server. Note that the similarity values and
item averages are valuable data to the server, so it does not want to share this
with the users. So, user u encrypts his entries bu j and ru j and sends them to
the server. The server then computes the sums in the encrypted domain, and
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sends the results back to u. User u then can decrypt the sums, and compute the
prediction. Note that the server need not send all four encrypted sums back,
as it can compute the denominator in (11.26) in the encrypted domain. It then
only sends the encrypted denomimator and numerator back to u.

The time complexity of encrypted item-based collaborative filtering is not
affected by encryption, apart from the computational overhead of computing
with encrypted numbers. For the similarity measure, the server has to col-
lect O(|U |) contributions for three sums, for each pair i, j, giving a total time
complexity of O(|U ||I|2). Securely computing the average scores ri requires
O(|U |) steps per item i, giving O(|U ||I|) in total. Finally, computing the pre-
dictions in an encrypted way takes O(|I|) steps per user u and item i, giving
also a total of O(|U ||I|2).

11.6 Conclusion
We have shown how collaborative filtering can be done on encrypted data.

In this way, sensitive information about a user’s preferences, as discussed in
the introduction, is kept secret, as it only leaves the user’s system in an en-
crypted form. We have listed a number of variants of the similarity measures
and prediction formulas described in literature, and showed for each of them
how they can be computed using encrypted data only, without affecting their
results.

Compared to the original set-up of collaborative filtering, the new set-up
requires a more active role of the users’ devices. This means that instead of a
(single) server that runs an algorithm, we now have a system running a distrib-
uted algorithm, where all the nodes are actively involved in parts of the algo-
rithm. The time complexity of the algorithm basically stays the same, except
for an additional factor |X | (typically between 5 and 10) for some similarity
measures, and the overhead from computing with large encrypted numbers.

Although we showed that collaborative filtering can in principle be done
on encrypted data, there are a few more issues to be resolved for a practical
implementation. For instance, one should take into account the computational
and communication overhead required due to the encryption and decryption of
data. Furthermore, the system should be made robust against more complex

to other users, each time using a profile with only one item. These issues are
topic of further research.

Although we only discussed collaborative filtering, the technique of com-
puting similarities between profiles on encrypted data only is interesting for
other applications as well, such as user matching and service discovery. In the
vision of ambient intelligence, where much more (sensitive) profiling will be

Privacy Protection in Collaborative Filtering by Encrypted Computation

forms of attacks, e.g. an attack where a user repeatedly computes similarities
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used in the future, this may play a crucial role in getting these applications
accepted by a wide audience. This is also topic of further research.
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